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Non-local symmetry and generating solutions for Harry-Dym-
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Ukraine
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Abstract. Non-local symmetries of the equations iy =/ (t)ui1s, wo= g1 )1 are investiga-
ted. Equations which admit non-local linearization are described, and formulas for generat-
ing solutions derived. Non-Lie ansatz

u=h{x}d(w)}+f(x}pla) +g(x)

is used for reduction of some nonlinear equations,

1. Iptroduction

Let us consider two classes of one-dimensional third-order nonlinear equations

ug—f (W11 =0 m

wo —glw i = 2
du &"u aw

Up = Cpit o, .1_;_1‘ = ! Wy = CuW py

wy=Ew=2" (u=0,1,neN)

— axy

L

where f(x), g(w) are arbitrary smooth functions.

In the present paper we pick out from the sets of equations (1) and (2) linearizable
equations by means of non-local transformations. Also we investigate the non-Lie
symmetry of (1) and (2) and obtain formulae of generating solutions for nonlinear
equations belonging to the classes {1}, (2). For reduction of (1) and (2) to ordinary
differential equations (opE) we use a non-Lie ansatz

u=h(x)p(@) +f(x)p(@) +g(x) x= (%o, x1) ¢<w)=§—Z ©

which can be considered as a generalization of the ansatz {1, 2]

u=f(x)p(@)+g(x).

Sets of partial exact solutions for nonlinear equations are constructed.
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Note that equation (1) is equivalent to the equation

20— &e(z) =0. {4)
The connection between these equations is given by the transformation
c(Zy=u (4a)

Thereby, the equality
Slwy=é(c™'[u))
12

holds. Here ¢ '[#] is the inverse function to c{z). In the case f() =1, c(z)=z""7,
equation (4) coincides with the known Harry-Dym equation [3].

2. Non-local symmetry

Let us consider equation (4)
zo=de(z) = af(é(:)z,).

The substitution

Z=wy {5a)
transforms (4) to the equation

wo=¢{w Iy, )]
Using the Euler-Ampere transformation
W=y =0 X =10 Xo=Yp v=v{yo, 3) v #0 (6)
for (5), we obtain

Vo= é(v;';’)vf.3vll . ()]
Using the substitution

vir=z(y0, 11} (7a)
in (7), twice differentiated with respect to y,, we obtain

zo=aH(é(z"")%z)). (8)

It follows from (8), that transformations (34}, (6), {7a) do not take out any equation
{(4) beyond this class of equations; none the less the set of equations (4) is not invariant
under these transformations. If function &(z"")z"> in (8) satisfies the condition

Hz Tz =2 A=constant (9a)
then (4) is linearizable. When the condition
y=e(z"Hz"? {9b)

holds, equation (8) coincides with the initial equation (4), i.e. these equations are
invariant with respect to non-local transformations (5a), (6), (7a).

The condition (9b6) allows one to describe all equations of class {4) which are
invariant with respect to the transformations (5a), (6), (7a).
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Theorens 1. Equation (4) is invariant with respect to the transformations (5aj, (6), (7a),
if it is of the form

zo=&1[z"*%¢(In 2)z,]. (10)
Here p{e} is an arbitrary smooth even function,
Corollary 1. Equation (4) is invariant with respect to transformations (4a), (5a), (6},
(7a), (4a) if it has the form

wp= (¢~ '[u]) " o(In ¢ [u]dun (1

where ¢ '[u] is the inverse function to (), and it can be determined implicitly from
the formula

u= ’[z'3/z¢(ln z) dz, (12)

Example 1. From theorem | and corollary 1 under p{a)=1 we obtain the following
invariant equations:

2=(-22"2)=8(z"""?) (13)
Ho=u3u1|]. (14)

Equation (13) is known as the Harry-Dym equation. Putting ¢(a)=cos ¢ we obtain
the equation

2o=03(z"** cos{In z}z)) (15)
and the corresponding equation of class (1)
ug=1(c”"[u])">"* cos In(c™ " [u])uy1y . (16)

Here ¢~ '[u] is determined implicitly by the formula
u=*%[sin In z— 3 cos In z]z" "% {n

So we find that the equations

so=21""up) (18a)
20=31(z %) (18b)
Wp= W1-]31'1-'| 11 (ISC)

are reduced to the linear equation
Vo= thy (A=1) (19)

and that, in particufar, the Harry-Dym equation and the equations which are connected
with it

Up = u3u| 1 (20a)
2= di(z %) (205)
Wp= wlt.lsfzwl 1 (20¢)

are invariant with respect to the corresponding non-local trapsformations.
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3. The non-local superposition and generating solutions
Theorem 2. The superposition formula for solutions of (18a)

— 372
Wo=u Ui

has the form

N (n (2) [83] (D (2 (4]
u(xo,x:)- u(xo, T)+ u(xo, T)+2 u(xp, T)ulxo, 7)

m )] {2) (2}
u(xg, 7)= df u(xo, f)

11} (2
T+ T=Xx

M @
1 \/u(xo, Ty ulxp, r) (1) (@ @

2 (1) N (2 @
u(xo, T)+ u{xg, T)

Let us illustrate the efficlency of formula (21).

Example 2. Let us take the simplest stationary solutions of (182):

i} 1

@ 2 2,
u(x)= (x,) u(x)=(x,)"

) z . . (@
Let us replace x; and x, In these solutions by parameters 7, 7.

oM @ @
u=r? u=41%

The differential equation (2156) takes the form

(1) () (1)

dr /AT =2(t/7)
and has the general solution

(1)
e T’

24 (xo)

. . , . n
Here A (xo) is an arbitrary smooth function. The equation for 7

(1
2—2Ar+2ax.

To=— {wy(xe, T)+ wnlxe, 7).

(18a)

(21a)

(215)

(21¢)

(214)

(22)

(23)

(24)

. L@ ) ()
we obtain by means of (21c¢), replacing z) in (23) by the expression x— 7. From (24)

we find

[ 3] N (2 §]
W(xo, x0) = (T + 2772 = (23, — D)2

=[2x,— A ./32-2x A1

(25)
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. . .. M, .
The function A (x,) can be defined more precisely from the condition that 7 is a solution
of (21d). As a result we obtain an equation for A {xg)

A=—61.
Therefore
A=cexp(—6xp)

. . , 3 , , 93]
where ¢ is an arbitrary constani. So a new solution u, which is constructed from u
),
and z is of the form

(;)( Xp, X1) =[2x1— c exp{—6x,) £ \/ ¢ exp(~12xp) — 2¢x, exp(~6x0)]°. (26)

Example 3. Let us choose the following two solutions of (18a):

m @
1 =x} u=9x%

. . . 0] 2
and rewrite them in variables 7 and ¢

ORNEY @ @
w=1" u=97"
. . . 1, .
Unlike the previous example from the opE (215), a cubic equation for T is obtained:

T3 AT+ Axy =0 A=2(x0). 27)

The real solution of (27) can be written in the form

th -1 1]
r==31""coszcos Ax; (272)

A=3307""(xq).

. ®
The solution u

o, 1) = (3%, — 202 =9[x, = 21 P

=9[x;+24"" cos s cos™ Ax ) (28)

we find from formula (21g). The condition on A (xg) is of the form

A=124
Hence
A=cexp(12x,)

. . . . AR
where ¢ is an arbitrary constant. Finally, one can write solufion # in the form

(f;)(xg , X1} =9[x, + 2¢ exp(—12x,) cos ; cos ™' {ex exp(12x0) }]% (29)

4. The non-group generating of solutions

For equations of class (11) we can write a formula for gcneratinl%, solutions. Let

u(xp. x1) be a known partial solution of nonlinear equation (11), and u{x,, x;) its new
solution; then the following assertion holds true:
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Theorem 3. The formula for generating solutions of equation (11}, connected with the
non-local symmetry (4a), (5a), (6). (7a), {4a), has the form

[ 0, 31)= [x. r— J( j 20, 7) dr) dr]m (30a)
=% (%, 7) (308)

n= j‘:}"’*(xu, 7)de (30¢)
Lo~ 21 (t7*11)=0. (30d)

Let us demonstrate the efficiency of formula (30) for equation (20@) on several simple
examples.

Example 4. Let (z];)= 1. Then

12
‘:c](xo, 7) =I:x,r— J(Jdt) drjl X =Jdr =7+ A (xp).

where 4,(xy) is an arbitrary function. Calculating the integral in the first equality and
resolving the second one with respect to 7, we obtain
@ — 1.2 172
ulxg, T)=[xit— 30— A7+ Lo(xg)] " (3D
T=x1— A(Xo). (32)

Having e(:zﬁ)cluded parameter 7 from equalities of the system (31), (32), we obtain the
solution u{xg, x;) in explicit form

w(xo, ¥1)=[A2— 3431”2 = 23 = constant. (33)
Example 5. The function

W0, X1) =42~ x)? (34)

is the solution of {20a), where A, is an arbitrary constant. It follows from relations
(3054, ¢}, that

x0T =44 — 1) (35)

x1 =8 (A — )72+ Aa(x0). (36)
Resolving (36) with respect to z, one obtains

t=h[x,— Ao(x)] 1P+ A,

h=—(2)'%, (37)
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Substituting 7 from formula (37) into condition (304), one obtains
.ig =—1,

. . ., @
Let us substitute specified value of 7 into formula (35) and find the solution u

Pxo, x1) =k(xq+ %) k=", (38)

5. Non-Lie ansiitze

Let us consider the ansatz of the form

w=h(x)p(@) + f(x)p(a) +g(x)
d 39

x=(,x)  pl@)=o )
dae

for constructing solutions of (20¢):

2wy =0. (20¢)

Let us summarize the results obtained for equation (20c¢) in table 1.
The ansétze 1-3 reduce the pDE (20¢) to the following ODEs:

(i} =0 i1="4¢3 Aa=0
(i) [2x18, —1][297*— ¢]=0 Ai=1=0
(i) (80— 2x]p+¢—207=0  Li=i=o0.

-3
Wo— Wi

Before reducing (20¢) by means of ansatzes 4-7 let us make the substitution
(Blo) ™= y(w).
As a result we obtain other reduced OpEs;
(V) sy -~V +y’@Ey— i) =0
) sy =¥+ @e +§)=0
() ¥~y —§)=0
(vil) ¥+ 4y +ip)=0.

It is known [1] that an infinitesimal operator

X= gi(x, w)6;+ n(xa w)aw (i=l,_f1)
which generates a Lie ansatz, corresponds to the equation
g[w]= éi(x, w)w;— 1(x, wy=0. (40)

Equations of the form (40} correspond (o non-Lie ansitze 1-7;
(1) x;wyy +4wy =0
(i) won +x{wyy +4xwy, =0
(iii) Xowon: +Xiwi1 4400 —Hwy, =0

(iv) xoworr +(x7 — Dwipy +4(x; —)wy; =0
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Table i, Non-Lie ansitze of the form (39) w=h{x)}¢(a@) +f(x)o(e)+g(x) for equation
— M2
Ho=Wy1 " "W .

N o hi(x) f(t) £(x)

1 X 0 xi e @) Axitl,

2 Xot+xi! 1 —-2x; Axy+ Az

3 Inxo+ a7 %7 ' Axit A

4 Inxo+tanh~tx,  —xg'?  2xxp'” x;'ﬂ{—z J@(m) dx+2 J‘qa(w)

=nllite

(xz_ l) d.\’1) dxt+)..1x, "'.12

5 In xo—tan™" x, ' —2x,x5""° xJ"”{ZJ-rp(m) dx, _2J‘¢[m}

e (]
(|+x1)dx' 8\

(xz-I-l) dx.)dx +dhxt+A;

1+
é xp+tanh™ x [ =2x —2.[cp(w) d-’Cl'*ZJ(P(CD)r'édX[
=%

f{feor g

+.3..x; + l;

7 xo—tan™' x, I ~2x —2J.q1(m)dx.-2J-<p(w}i;

*8 .[(.[“’(m’ T dx')dx‘

+R..x. + 2.2

2
X)

3 d.’ﬁ
X1

(V) xowory + (3 + Dheygy + 40, —Hwy =0
(Vi) wor + (X — Dy +4xmwy, =0
(Vll) WUH'I‘(I?‘!'I)W“]'—‘!-XIW“:O.
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