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Non-local symmetry and generating solutions for Harry-Dym- 
type equations 
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Dnipropetrovsk Civil Engineering Institute, 24a Chemyshevskij Streel, Dnipropetrovsk 92, 
Ukraine 

Received 18 October 1993 

Abstract. Non-local symmetriesoftheequations U ~ = / ( K ) U , , , ,  wo=g(a,,)w,,, are investiga- 
ted. Equations which admit non-local linearization are described, and formulas for generat- 
ing solutions derived. Non-Lie ansatz 

u = A ( . M w )  +/(*)a(o) +g(x) 

is used for reduction of some nonlinear equations 

1. Introduction 

Lei us consider two classes of one-dimensional third-order nonlinear equations 

ua-/(U)ulll =o (1) 

IVO - g ( l V ~ , ) l ~ ~ ~ , ,  = 0 (2) 

aU anu aw 
wfi = aPw = - 

ax, Y n a# ax, 
up = a,u = - uI.. .I  =ayu=- 

anlv 
Y ax; 

u ’ t . . l = ~ w = -  (p=O, 1 , n e N )  
n 

wheref(u), g(wII) are arbitrary smooth functions. 
In the present paper we pick out from the sets of equations ( I )  and (2) linearizable 

equations by means of non-local transformations. Also we investigate the non-Lie 
symmetry of (1) and (2) and obtain formulae of generating solutions for nonlinear 
equations belonging to the classes ( I ) ,  (2). For reduction of (1)  and (2) to ordinary 
differential equations (ODE) we use a non-Lie ansatz 

(3) @(CO)=- d a  
x = (xo, XI) 

d o  
u = h ( x ) @ ( o )  + m a ( @ )  +g(x) 

which can be considered as a generalization of the ansatz [ 1,2] 

U =/(x)a,(o ) +&). 

Sets of partial exact solutions for nonlinear equations are constructed 
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Note that equation (1) is equivalent to the equation 

z,-a:c(L)=o. 

The connection between these equations is given by the transformation 
(4) 

c(z)=u. ( 4 4  

f( U) = f( c-I [U]) 

Thereby, the equality 

holds. Here c-’[u] is the inverse function to c(K). In the casef(u)=t?, c(z)=z-~’* ,  
equation (4) coincides with the known Harry-Dym equation [3]. 

2. Non-local symmetry 

Let us consider equation (4) 

zo= a:c(z) = 8(5(:)z1). 

The substitution 

z=w1,  

transforms (4) to the equation 

w o = f ( w l l ) w l l l ~  

Using the Euler-Ampere transformation 

w = y l u , - v  X I  = U) X o = Y o  U =  u(Yo,J l )  VI1 #O (6) 
for (S), we obtain 

u g =  f(v;:)uri’ull I. (7) 

VI ,  = 4 y o a ,  Ul) (74 

z0 = 8:(5(~-~):-~2~), (8 )  

Using the substitution 

in (7), twice differentiated with respect to y l ,  we obtain 

It follows from ( S ) ,  that transformations (50), ( 6 ) ,  (7a) do not take out any equation 
(4) beyond this class of equations; none the less the set of equations (4) is not invariant 
under these transformations. If function ?(Z-’)Z-~ in (8) satisfies the condition 

i . (z-1)z-J=A A=constant (94  

then (4) is linearizable. When the condition 
E ( z ) = C ( z - ’ ) z - 3  

holds, equation (8) coincides with the initial equation (4), i.e. these equations are 
invariant with respect to non-local transformations (5a), (6) ,  (70). 

The condition (96) allows one to describe all equations of class (4) which are 
invariant with respect to the transformations ( 5 4 ,  (6), (7a). 
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TFreoren~ 1. Equation (4) is invariant with respect to the transformations (Sa), (6) ,  (7a),  
if it is of the form 

z0= ~ : [ Z - ~ ~ ~ ~ ( I I I  (10) 

Here p(a) is an arbitrary smooth even function. 

CoroNary I .  Equation (4) is invariant with respect to transformations (4a), ( 5 ~ ) .  (6) ,  
(7a), (4a) if it has the form 

u o =  (c-’[u])-”’p(ln c-’[ul)ulll (11 )  

where c-’[u] is the inverse function to c(u) ,  and it can be determined implicitly from 
the formula 

u= jz-3/’p(in i) dz. (12) 

Example I .  From theorem I and corollary 1 under ?(a) = I we obtain the following 
invariant equations: 

zo = a:(- ;z-3/’z1) = (13) 

(14) 3 uo=u UIII. 

Equation (13) is known as the Harry-Dym equation. Putting p(a)=cos (I we obtain 
the equation 

~ ~ = a ~ ( z - ~ ’ ’  cos{ln z}zI) (15) 

and the corresponding equation of class ( 1 )  

U ~ = ( C - I [ U ] ) - ~ ~  cos ~n(c-’[u])ullI. 

Here c-’[u] is determined implicitly by the formula 
I u=:[sin In z -  I cos In z]z-’/’. 

U0 = U3I2UI I ,  

Za=a:(z-z) 
W O =  w;;w111 

u o = v l l l  (.I= 1) 

So we find that the equations 

are reduced to the linear equation 

and that, in particular, the Harry-Dym equation and the equations which are connected 
with it 

( 2 0 4  

za=a:(z-l’2) ( 2 W  

WO = w;?”wl ,I (204 

3 uo=u U111 

are invariant with respect to the corresponding non-local transformations. 
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3. The non-local superposition and generating solutions 

Tltcovetn 2. The superposition formula for solutions of (18,) 

U0 = U3%] ] 

has the form 

I 

Let us illustrate the efficiency of formula (21). 

Exumple 2. Let us take the simplest stationary solutions of (180): 

(1) I (2) 2 2 
U(XI)=(.L1)2 u(xl)=(xI)z. 

I 2 .  (1) ( 2 )  
Let us replace xI and xI In these solutions by parameters r ,  r : 

(1) (21 (V2 
U =  r u = 4 7 .  

The differential equation (211r) takes the form 

(2) ( 1 )  (2 )11 )  
d r / d r  = 2 ( r / r )  

and has the general solution 

( U 2  
12) r r = - -  

2a W O )  ' 

(1) 
Here d(x0) is an arbitrary smooth function. The equation for r 

( 1 )  
7 2 - 2 i ~ ) t 2 ~ . x ~ = 0  

(2) . (1) 
we obtain by means of (Zlc), replacing r in (23) by the expression x- r. From (24) 
we find 
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The function A (SO) can be defined more precisely from the condition that r is a solution 
of (214.  As a result we obtain an equation for d(xo) 

(I), 

i= -6d. 

Therefore 
d=cexp(-6xo) 

0) (1) 
where c is an arbitrary constant. So a new solution U ,  which is constructed from U 
and U is of the form 
(3) u(xo, xl)=[2x1 -cexp(-6xo)~,/c2 exp(-12xo)-2cxl exp(-6x0)]’. 

Example 3. Let us choose the following two solutions of (18a): 

(2) , 

(26) 

(11 ( 2 )  
U =XI u=9$ 

(11 (2) 
and rewrite them in variables r and r 

( 1 )  . 
Unlike the previous example from the ODE (216), a cubic equation for r is obtained: 

(1 )  (1) 
r J-ar +&I =o 

r = -3a-1 cos f cos-l ax, 
a=;fia-2-’12(xo). 

a =a (xo). 
The red solution of (27) can he written in the form 

( 1 )  

(3) 
The solution U 

(3) u(xo, XI)= (3x1 -2(:))2=9[xI -5 z( I )  r ]  2 

=9[x1+2a-1cosfcos-1 .2x112 
we find from formula (21a). The condition on A(xO) is of the form 

i= 12a. 

A= c exp( 12xo) 

Hence 

13) , 
where c is an arbitrary constant. Finally, one can write solution U in the form 

u(xo ,  xI)  = 9[xl +2cexp(-12xo) cos f cos-’{cxl exp(12~~)} ]~ .  (29) 
(3) 

4. The noo-group generating of solutions 

For equations of class (11) we can write a formula for generatin solutions. Let 
u(x0. xI) be a known partid solution of nonlinear equation (II) ,  and u(xo, x,) its new 
solution; then the following assertion holds true: 

(I) 61 
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Theorem 3. The formula for generating solutions of equation (1  1). connected with the 
non-local symmetry (4a), ( 5 4 ,  (6) ,  (74, (44, has the form 

( 3 0 4  

ro - 8, (r;3/2r1 I) = 0. (304 

Let us demonstrate the efficiency of formula (30) for equation (20a) on several simple 
examples. 

(I1 
Exantple 4. Let U = 1. Then 

s I12 

(2 )  u(xo,  T) = [ x l r - s ( s d r )  dr] xt = d r =  I+ AI(xo). 

where dt(xo) is an arbitrary function. Calculating the integral in the first equality and 
resolving the second one with respect to r ,  we obtain 

( 3 1 )  
(2) 
u (xo,  r ) = [ x l r -  tr2-dlr+d2(xo)11~2 

r=xt-al(xo). (32) 

Having excluded parameter r from equalities of the system (31), (32), we obtain the 
solution u(xo, xt) in explicit form 

(21 

(33) 
(21 
u(xo, xI) = [A- ;A;P’~ = d3= constant. 

Example 5. The function 

(34) 

is the solution of ( ~ O U ) ,  where II is an arbitrary constant. It follows from relations 
(30b, c), that 

11) 
U ( X 0 ,  x, )=t (d ,  -x$ 

(2) 
u(x0,  r )  =4(d1 - r)-’ 

=?(al -T)-3+a2(Xo). 

r = h [ x , - ~ 2 ( x o ) ] - ’ ~ - ’ + d ,  

A=-(=) . 

Resolving (36) with respect to r,  one obtains 

3 -1/3 

(35) 

(36) 

(37) 
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i * = - l .  

4555 

Substituting T from formula (37) into condition (30d), one obtains 

Let us substitute specified value of r into formula (35) and find the solution (z? 

(38) (2) k = ( l  2/3 
U(XO, X I ) = ~ ( X O + X I ) ~ ' ~  3 , 

5. Non-Lie ansiitze 

Let us consider the ansatz of the form 

1v=h(x)@(w) +f(x)qJ(o) +g(x) 

for constructing solutions of (20c): 

WO - w;:/2wl ) I  = 0. 

Let us summarize the results obtained for equation (20c) in table I .  
The ansatze 1-3 reduce the PDE (20c) to the following ODES: 

(i) @ = O  il = -4pl i 2 = 0  

(ii) [2x1a,- 1][2@-r'2-+j]=o i , = i 2 = 0  

(iii) [a,-2x1][fp+ @ - 2 ~ - , - ' / ~ ]  =o 

(@(0 ) ) -1 /2=  W ( 0 ) .  

a, = i2= 0. 

Before reducing (2Oc) by means of ansatzes 4-7 let us make the substitution 

As a result we obtain other reduced ODES: 

(iv) f w  - @ + &4@- p) = O  
(v) f w  - I+++ a"4@ + p)=O 
(vi) @-v3(4@-v)=0 

(vii) @ + ~ ' ( 4 9  + p) = 0. 

It  is known [ I ]  that an infinitesimal operator 

x= 5'(x, w)&+ q(x. w)d,. (i=l,) 

which generates a Lie ansatz, corresponds to the equation 

Q[w]=('(x, w)w;-q(x, w ) = O .  

Equations of the form (40) correspond to non-Lie ansatze 1-7: 

(i)  x lw l l l+4wl l=0  

(ii) wall +x?vll1+4x1w~,=0 

(iii) x~woll + x:wl I I + 4(x1 - &vl I = 0 

(iv) .rowel 1 + (x? - I)w,-' t 1 + 4(x1 - B w l I  = o 

(40) 



Table 1. Non-Lie ansetx of the form (39) w=h(x)@(m)  tf ( .r)q(m) +g(x) for equation ,",=,";;~,",,, . 

References 

[ I ]  Fushchich W 1 1981 Teorefiko oigebroieheskie isledown@ U murernat ie l reskojp l~  (Kiev: institute of 

[2] Fushchich W I, Shtelen W M and Serov M I 1993 Symmerry .4nulysis und Exact Sdufions of Equalions 

[3] Magri F 1978 J.  Mutlr. Phys. 19 1156-62 

Mathematics) (in Russian) p 6 

of Nonlinenr Mnlhemnficd Physics (Dordrecht: Kluwer) 


